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This paper focuses on the problem of scaling synchronization of hyperchaotic Yang system, which is constructed by adding a 

linear controller to the Yang system with one saddle and two stable node-foci. When the parameters are fully known in 

advance, we apply the one-way linear coupling approach to synchronize the hyperchaotic Yang system up to a scaling factor. 

When the parameters are unknown, we utilize the adaptive method to synchronize the uncertain hyperchaotic Yang system 

up to a scaling factor. Simultaneously, we carry out many numerical simulations to verify the validation of the proposed 

schemes. 
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1. Introduction 

 

High sensitivity to parameter and initial condition 

perturbations is one of typical approaches for underlying 

characteristics of chaos [1]. In the last five decades, chaos 

analysis and control as well as chaotification in dynamical 

systems have been studied extensively. Hyperchaotic 

system is usually classified as a chaotic system with more 

than one positive Lyapunov exponent, which indicates that 

the chaotic dynamics of the system are expanded in more 

than one direction giving rise to a more complex attractor 

[2–9]. At the same time, due to its theoretical and practical 

applications in many technological fields, such as secure 

communications, nonlinear circuits, neural networks, 

control, synchronization, hyperchaos has recently become 

a central topic in nonlinear sciences fields (see e.g. [10–19] 

as well as their references). 

The first hyperchaotic system was reported by 

Rössler in 1979 [2]. It might be due to the fact that the 

hyperchaotic systems are more complex and chaos 

generation in 4D or more autonomous systems is more 

difficult than chaotic systems [2-9]. So how to generate a 

hyperchaotic attractor is always a very attractive and yet 

technically quite challenging task theoretically. It has wide 

foreground, important theoretical and practical meanings 

to carry this research further. Based on the relations of the 

drive (or master) system and the response (or slave) 

system, one can classify synchronous behaviors into 

several different types, such as complete synchronization, 

anticipation synchronization, phase synchronization, 

projective synchronization, and generalized 

synchronization. These definitions are also regarded as 

different degrees of realization of a universal concept of 

synchronization.  Along this line, chaos synchronization 

can successfully be realized with the help of various 

methods such as linear (nonlinear) feedback control, 

adaptive control, and sliding model control [10-19]. 

More recently, Yang and Chen proposed an 

interesting new system with one saddle and two node-foci 

[20], which make it fascinating mathematical entity itself 

and a useful candidate in real-world applications, such as 

security communications. Later on, this new system got its 

name, Yang system [21]. It is immediately clear that the 

Yang system will be topologically nonequivalent to the 

original Lorenz, Chen and all Lorenz-like systems. A more 

complex local analysis and the existence of homoclinic 

and heteroclinic orbits of Yang system have been carefully 

and rigorously studied in [22]. The sufficient and 

necessary conditions for Lyapunov stability of Yang 

system was discussed in [23]. The dynamics of Yang 

system involving fractional calculus was studied in [24]. 

By introducing a linear feedback controller to the second 

equation of the Yang system, the authors in [25] obtained 

the so-called hyperchaotic Yang system, in which they 

studied some complex dynamical behaviors such as 

ultimate boundedness, Lyapunov exponents, Poincaré 

projections, and 4D Hopf bifurcations.  

However, how to synchronize hyperchaoticYang 

system with or without the known parameters is still an 

open question. This situation motivates us to explore this 

topic associated with a scaling factor. In other words, we 

will deal with the problem of scaling synchronization of 

the hyperchaotic Yang system. 

The paper is organized as follows. In Section 2, we 

formulate the hyperchaoticYang system. In Section 3, we 

apply one-way linear coupling approach to synchronize 

the considered system. In Section 4, we design a new 

adaptive controller with parameter update laws to 

synchronize the uncertain hyperchaotic Yang system.  
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2. The hyperchaotic Yang system 

 

The hyperchaotic Yang system is described by the 

following equations: 

 

{
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          (2.1)  

 

where  > 0 𝑏 > 0 𝑐 > 0 k1 and k2 are two constant 

parameters, determining the chaotic and hyperchaotic 

behaviors and bifurcations of system (2.1). For example, 

when the parameters (  b c k1    k2)  (35 3 35 2 

7.5)   one have two positive Lyapunov exponents 

 

 1  0.27 7    2  0. 37   

 

and the other two are 

 

    0.0000     3 .   7. 

 

In this situation the hyperchaotic Yang system (2.1) indeed 

has a hyperchaotic attractor, which is depicted in Fig. 1. 

  

3．Scaling synchronization via the one-way 

   linear coupling approach 

 

In this section, we focus on the scaling synchronization 

of hyperchaotic Yang system via the one-way coupling 

method. More precisely, the corresponding drive-response 

systems of system (2.1) are expressed, respectively, as  
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(3.2)  

where    (    2 3  ) are control parameters such that 

the two systems can be synchronized.  

 

 

Fig. 1. Hyperchaotic attractor of hyperchaotic Yang 

system (2.1) with the parameters (  𝑏 𝑐 𝑘1    𝑘2)  

(35 3 35 2 7.5):  (a)        space  and  (b)  

                    𝜔 space. 

 

Clearly, if system (3.1) has an attractor  , then the 

synchronized response system (3.2) has an attractor   .  

Let  1          2            z   z  

   ω   ω   where   0 is a scaling factor. Then the 

error system between system (3.1) and (3.2) reads 

 

{
  
 

  
 

   

  
 ( 1   ) 1 +   2 

   

  
 c 1 +  2 2 +    

   

  
 (   b)   

   

  
  k1 1  k2 2 +     .

       (3.3) 

 

Moreover, it yields the Jacobian matrix 



102                                           Huijian Zhu, Caibin Zeng 

 

 

  (

 1                     0          0   
c
0
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 2
0

 k2

0
   b

0

 
0
  

)      (3.4) 

 

and its characteristic equation 

 

 ( )  (    + b)(  +  1 
2 +  2 +   )     

where 

 

   {

 1     1   2     

 2  ( 1   )( 2 +   ) +  2    c + k2 

    ( 1   )( 2  + k2) +  (c  + k1).
   (3.5)  

 

According to the Routh–Hurwitz criterion, the real 

parts of all the roots  in  ( )  0 are negative if and 

only if 

   b  0  1 > 0    > 0   1 2    > 0.   (3.6) 

In other words, (3.6) is the necessary and sufficient 

condition of the asymptotical stability of error system 

(3.3).  

Based on the above discussion, the following 

property is verified. 

Theorem 1 The drive system (3.1) can synchronize 

the response system (3.2) if and only if the condition (3.6) 

is satisfied up to the scaling factor μ. 

We then carry out some numerical simulations to 

verify the effectiveness of the proposed synchronization 

method. We choose the parameters (  b c k1    k2)  

(35 3 35 2 7.5)  in all simulations so that the 

hyperchaotic Yang system exhibits hyperchaotic behaviors 

if no controls are applied. The initial conditions of both of 

the drive system (3.1) and the response system (3.2) are 

chosen as ( . 5 3.5 3.3  ). Letting   1   5  2  

 30    0        then we get 

 

{

   b   3  0 
 1  7 > 0 
    70 > 0 
 1 2      2  5 > 0.

 

 

Thus condition (3.6) in Theorem 1 is satisfied, 

implying that the synchronization between drive system 

(3.1) and response system (3.2) is achieved. 

Next, we can choose any non-zero scaling factor μ, 

say,   2. It means to be in-phase synchronization and 

the scaling attractors are showed in Fig. 2. The drive 

attractor is the smaller one (blue solid line), the response 

attractor is the bigger one (red dotted line). The evolution 

of the time series of the drive system (3.1) and the 

response system (3.2) is shown in Fig. 3. We can see that 

the response attractor is twice the size of the drive one. 

The evolution of the error systems for this situation is 

shown in Fig. 4. 

 

 

 

 

Fig. 2. Scaling attractors of hyperchaotic Yang system with the 

parameters (  𝑏 𝑐 𝑘1     𝑘2)  (35 3 35 2 7.5) and 

𝜇  2:  (a)       space and (b)     𝜔 space. 
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Fig. 3. The time series of drive-response systems with 𝜇  2. 

 

Fig. 4. The evolution of error system (3.3) with 𝜇  2. 

 

Moreover, we let     2 , which refers to the 

anti-phase synchronization and the phase difference 

between two attractors is π. 

  

Fig. 5. Scaling attractors of hyperchaotic Yang system with the parameters (  𝑏 𝑐 𝑘1    𝑘2)  (35 3 35 2 7.5)  

and 𝜇   2:  (a)       space and (b)     𝜔 space. 

 

 

 

Herein the scaling attractors are showed in Fig. 5. The 

drive attractor is the smaller one (blue solid line), the 

response attractor is the bigger one (red dotted line). The 

evolution of the time series of the drive system (3.1) and 

the response system (3.2) is shown in Fig. 6. We can see 

that the response attractor is twice the size of the drive one, 

while the phase difference between two attractors is π. The 

evolution of the error systems for this situation is shown in 

Fig. 7. 

 

 

Fig. 6. The time series of drive-response systems  

with   2 . 
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Fig. 7. The evolution of error system (3.3) with 𝜇   2. 

 

4. Scaling synchronization via the adaptive  

   method 

 

In this section we study the scaling synchronization of 

hyperchaotic Yang system with fully unknown parameters 

via adaptive synchronization method. We also choose (3.1) 

as drive system, and define the response system as 

 

{
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where    b  c  k1
  k2

  are respectively the parameter 

estimations of   b c k1 k2, and     (    2 3  ) are 

controllers such that the two systems can be synchronized. 

Clearly, if system (3.1) has an attractor   , then the 

synchronized response system (4.2) has an attractor   .  

Let  1           2            z   z  

   ω   ω   where   0 is the scaling factor. Then 

the error system between system (3.1) and (4.2) reads 

 

{
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(4.3) 

 

Thus our objective in what following is to find some 

effective controllers    (    2 3  )  with parameters 

estimation update laws which can make l m →∞    0. 

Theorem 2 The hyperchaotic Yang system (3.1) can 

synchronize the uncertain controlled hyperchaotic Yang 

system (4.2) up to a scaling factor μ by designing the 

following adaptive controllers 

 

{
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in which the parameter estimations update laws are 

{
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Proof. Substituting equation (4.4) into equation (4.3) 

gets 

{
  
 

  
 

   

  
 𝜇  (     )   1 

   

  
        2 

   

  
    bz     

   

  
      k 

     k 
 k 

    

    (4.6)  

 

where the parameter errors are defined such that  

          b  𝑏  𝑏     𝑐  𝑐    k 
 k1

   k1   

 k 
 k2

   k2.  Then one can construct the following 

Lyapunov function 
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Differentiating  with respect to the time and using (4.5) 

and (4.6), we obtain 
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According to Lyapunov stability theory, we know that 

error systems (4.3) is asymptotically stable in the 
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neighborhood of the zero solution, which means the 

synchronization between drive system (3.1) and response 

system (4.2) is achieved. This completes the proof.      

We then carry out some numerical simulations to 

verify the effectiveness of the proposed synchronization 

method. We choose the parameters (  b c k1    k2)  

(35 3 35 2 7.5)  in all simulations so that the 

hyperchaotic Yang system exhibits hyperchaotic behaviors 

if no controls are applied. The initial conditions of both of 

the drive system (3.1) and the response system (4.2) are 

( . 5 3.5 3.3  ). Moreover, the initial values of the 

estimated parameters are chosen as    30 b  5 

c  30 k1
  5 k2

  5.  

Fig. 8. Scaling attractors of hyperchaotic Yang system with the 

parameters (  𝑏 𝑐 𝑘1     𝑘2)  (35 3 35 2 7.5) and 

𝜇  2:  (a)       space and (b)     𝜔 space. 

 

 

 

Next, we can choose any non-zero scaling factor α, 

say,   2. It means to be in-phase synchronization and 

the scaling attractors are showed in Fig. 8. The drive 

attractor is the smaller one (blue solid line), the response 

attractor is the bigger one (red dotted line). The evolution 

of the time series of the drive system (3.1) and the 

response system (4.2) is shown in Fig. 9. The evolution of 

the error systems for this situation is shown in Fig. 10. The 

evolutions of parameter estimators are shown in Fig. 11. 

 

Fig. 9. The time series of drive-response systems with 𝜇  2. 

 

Fig. 10. The evolution of error system (4.3) with 𝜇  2. 
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Fig. 11. The evolution of parameter estimators 𝜇  2. 

Moreover, we let     2 , which refers to the 

anti-phase synchronization and the phase difference 

between two attractors is π. Herein the scaling attractors 

are showed in Fig. 12. The drive attractor is the smaller 

one (blue solid line), the response attractor is the bigger 

one (red dotted line). The evolution of the time series of 

the drive system (3.1) and the response system (4.2) is 

shown in Fig. 13. The evolution of the error systems for 

this situation is shown in Fig. 14. The evolutions of 

parameter estimators are shown in Fig. 15. 

 

Fig. 12. Scaling attractors of hyperchaotic Yang system with the 

parameters (  𝑏 𝑐 𝑘1     𝑘2)  (35 3 35 2 7.5) and 

𝜇   2:  (a)       space and (b)     𝜔 space.
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 Fig. 13. The time series of drive-response systems with 𝜇   2. Fig. 14. The evolution of error system (4.3) with 𝜇   2

.

 

Fig. 15. The evolution of parameter estimators 𝜇   2. 
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5. Conclusion 

 

In this paper we have studied the scaling 

synchronization of hyperchaotic Yang system via the 

one-way linear coupling approach and the adaptive 

method, respectively. For the former, we apply the 

Routh-Hurwitz criterion to obtain the necessary and 

sufficient condition. For the latter, we utilize the Lyapunov 

stability theorem to get a sufficient condition. Moreover, 

we carried out many numerical simulations to verify our 

proposed synchronization approaches up to a scaling factor. 

Interestingly, the scaling factor is a free parameter, which 

makes it very useful in security communications. 

Last but not least, we point out the scaling factor can 

be chosen as different constants for each equation of the 

considered systems. This situation refers to mixed 

synchronization, in which some state variables are 

in-phase synchronization and others are anti-phase 

synchronization. From the above discussion, our proposed 

approaches in this paper are also valid for mixed 

synchronization. From this point of view, the scaling 

synchronization has potential application in processing 

industry if one intends to enhance or reduce the 

concentration and even remove another component in 

catalytic reactions to obtain a desired final product. 
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